-

Additional Information

Additional Information
  • Home

Account Navigation

Account Navigation

Currency - All prices are in AUD

Currency - All prices are in AUD
 Loading... Please wait...
  • Call us on 859-336-3246
  • My Account
  • Gift Certificates
WaterSimplyPure.com

Ultrafiltration

Ultrafiltration (UF) is a membrane filtration process similar to Reverse Osmosis, using hydrostatic pressure to force water through a semi-permeable membrane. The pore size of the ultrafiltration membrane is usually 103 - 106 Daltons. Ultrafiltration (UF) is a pressure-driven barrier to suspended solids, bacteria, viruses, endotoxins and other pathogens to produce water with very high purity and low silt density. Ultrafiltration (UF) is a variety of membrane filtration in which hydrostatic pressure forces aiquid against a semipermeable membrane. Suspended solids and solutes of high molecular weight are retained, while water and low molecular weight solutes pass through the membrane. Ultrafiltration is not fundamentally different from reverse osmosis, microfiltration or nanofiltration, except in terms of the size of the molecules it retains.

A membrane or, more properly, a semipermeable membrane, is a thin layer of material capable of separating substances when a driving force is applied across the membrane. Once considered a viable technology only for desalination, membrane processes are increasingly employed for removal of bacteria and other microorganisms, particulate material, and natural organic material, which can impart color, tastes, and odors to the water and react with disinfectants to form disinfection byproducts (DBP). As advancements are made in membrane production and module design, capital and operating costs continue to decline. The pressure-driven membrane processes discussed in this fact sheet are microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO).

 

The primary advantages of low-pressure UF membrane processes compared with conventional clarification and disinfection (postchlorination) processes are:

• No need for chemicals (coagulants, flocculates, disinfectants, pH adjustment);
• Size-exclusion filtration as opposed to media depth filtration;
• Good and constant quality of the treated water in terms of particle and microbial removal;
• Process and plant compactness; and
• Simple automation.

Ultrafiltration (UF) is used to remove essentially all colloidal particles (0.01 to 1.0 microns) from water and some of the largest dissolved contaminants. The pore size in a UF membrane is mainly responsible for determining the type and size of contaminants removed. In general, membrane pores range in size from 0.005 to 0.1 micron. UF membrane manufacturers classify each UF product as having a specific molecular weight cutoff (MWC), which is a rough measurement of the size of contaminants removed by a given UF membrane. A 100,000 MWC UF membrane means that when water containing a given standard compound with a molecular weight of around 100,000 daltons is fed to the UF unit, nearly all of the compound will not pass through the membrane.

Substances with a molecular weight of 100,000 daltons have a size of about 0.05 microns to about 0.08 microns in diameter. UF membranes are used where essentially all colloidal particles (including most pathogenic organisms) must be removed, but most of the dissolved solids may pass through the membrane without causing problems downstream or in the finished water. UF will remove most turbidity from water.